IN VITRO PHOTODYNAMIC INACTIVATION OF MYCOBACTERIUM TUBERCULOSIS BY RADAHLORIN
https://doi.org/10.21292/2075-1230-2018-96-1-5-10
Abstract
Goal: to detect the best mode of in vitro photodynamic inactivation of M. tuberculosis by Radahlorin.
Subjects and methods. The activity of culture of M. tuberculosis, H37Rv strain, photosensitized by 0.00005% Radohlorin was compared and the intensity of growth was assessed after photodynamic inactivation by different doses of light energy with 662 nm wavelength.
Results. For the first time, anti-microbial properties of E6 chlorine in the form of medicamental photosensitizer (0.00005% Radohlorin) suppressing museum strain of M. tuberculosis of H37Rv were detected. Photoinactivation of M. tuberculosis depends on the dose and achieves its maximum in 10 minutes of light exposure with light energy of 0.5 W.
About the Authors
D. A. BredikhinRussian Federation
Engineer of Laboratory for Use of Quantum Materials, Devices and Systems
14, Vavilova St., Novosibirsk, 630082
S. D. Nikonov
Russian Federation
Doctor of Medical Sciences, Head of Laboratory for Use of Quantum Materials, Devices and Systems
Phone: +7 (383) 225-59-81
A. G. Cherednichenko
Russian Federation
Senior Engineer of Laboratory for Use of Quantum Materials, Devices and Systems
Phone: +7 (383) 203-83-62
T. I. Petrenko
Russian Federation
Doctor of Medical Sciences, Associate Professor at FPK and PPS Tuberculosis Control Department
81a, Okhotskaya St., Novosibirsk, 630040
Phone: +7 (383) 203-83-58
References
1. Bredikhin D.А., Nikonov S.D., Cherednichenko А.G. Modes of laser photodynamic inactivation of drug resistant M. tuberculosis by minor concentrations of methylene blue. Biomedical Photonics, 2016, vol. 5, no. S1, pp. 2-3. (In Russ.).
2. Bredikhin D.А., Nikonov S.D., Cherednichenko А.G., Petrenko T.I. Conditions of photodynamic inactivation of multiple drug resistance Mycobacterium tuberculosis by methylene blue. Fotodinamicheskaya Terapiya i Fotodiagnostika, 2014, no. 1, pp. 23. (In Russ.).
3. Erokhin V.V., Golyshevskaya V.I., Sevastyanova E.V., Shulgina M.V. Mikrobiologicheskie metody diagnostiki tuberkuleza. [Microbiological methods for diagnostics of tuberculosis]. 2008, pp. 24.
4. Meditsinskaya tekhnologiya. Reg. № FS-2006/062 ot 05.05.2006 g. Fotodinamicheskaya terapiya zabolevaniy parodonta. [Medical Technology. Reg. No. FS-2006/062 as of 05.05.2006. Photodynamic therapy of periodontal diseases].
5. Meditsinskaya tekhnologiya. Reg. № FS-2006/063 ot 05.05.2006 g. Fotodinamicheskaya terapiya vulgarnykh ugrey. [Medical technology. Reg. No, FS-2006/063 as of 05.05.2006. Photodynamic therapy of acne vulgaris].
6. Meditsinskaya tekhnologiya. Reg. № FS-2006/066 ot 05.05.2006 g. Fotodinamicheskaya terapiya gnojnykh, dlitelno nezazhivayuschikh ran i troficheskikh yazv. [Medical Technology. Reg. No. FS-2006/066 as of 05.05.2006. Photodynamic therapy of purulent persisting non-healing wounds and ischemic ulcers].
7. Nikonov S.D., Bredikhin D.А., Ogirenko А.P., Smolentsev M.N., Slobodin D.G., Petrenko T.I., Kashnikova N.M., Krasnov D.V., Lelyanova O.B. Photodynamic therapy of pleural empyema with multiple drug resistance of mycobacteria. Biomedical Photonics, 2016, vol. 5, no. S1, pp. 23-24. (In Russ.)
8. Revyakina O.V., Аlekseeva T.V., Filippova O.P., Pavlenok I.V. Osnovnye pokazateli protivotuberkuleznoy deyatelnosti v Sibirskom i Dalnevostochnom federalnykh okrugakh. [Main indicators of tuberculosis control activities in Siberian and Far Eastern Federal Districts]. Novosibirsk, Sibmedizdat NGMU Publ., 2016, 92 p. https://drive.google.com/file/d/0B-pPYwGOnjVIdHN3OW41bG5HU0U/view
9. Stranadko E.F., Tolstykh P.I., Koraboev U.M. Photo-chemical impact on pathogenic agents, causing purulent inflammatory diseases of soft tissues. Materialy III Vserossiyskogo simpoziuma 11-12 noyabrya 1999 g. [Materials of the IIIrd All-Russian Symposium on November 11-12, 1999]. Moscow, 1999, pp. 83-91. (In Russ.)
10. Tolstykh P.I., Koraboev U.M., Shekhter А.B. et al. Experimental justification of photodynamic therapy use on healing of purulent wounds. Lazernaya Meditsina, 2001, no. 5(2), pp. 8-13. (In Russ.)
11. Yagudina R.I., Sorokovikov I.V. Pharmacoeconomics of tuberculosis: technical guidelines for trials. Farmakoekonomika: Teoriya i Praktika, 2014, no. 4, vol. 2, pp. 13. (In Russ.)
12. Bachmann B., Knuver-Hopf J., Lambrecht B. Target structures for HIV-1 inactivation by methylene blue and light.. J. Med. Virology, 1995, vol. 47, pp. 172-178.
13. Jackson Z., Meghji S., McRobert A.M. Killing of the yeast and hyphal forms of Candida albicans using a light-activated antimicrobial agent. Lasers Med. Sci., 1999, vol. 14, iss. 2. pp. 150-157.
14. Lienhardt C., Raviglione M., Spigelman M. et al. J. Infect. Dis., 2012, vol. 205, suppl. 2, pp. 241-249.
15. Malik Z., Hanania J., Nitzan Y. Bactericidal effects of photoactivated porphyrins. An alternative approach to antimicrobial drugs. J. Photochem. Photobiol. B: Biology, 1990, vol. 5, pp. 281-293.
16. Minnock A., Vernon D.I. et al. Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. J. Photochem. Photobiol. B: Biology, 1996, no. 32 (3), pp. 159-164.
17. Minnock A., Vernon D., Schofield J. et al. Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli. Antimicrob Agents Chemother., 2000, vol. 44, no. 3, pp. 522-527.
18. Mohr H., Lambrecht B., Selz A. Photodynamic virus inactivation of blood components. Immunological investigation, 1995, vol. 24, pp. 73-83.
19. Nachmoon Sung, Yonjoon Ra, Sunmi Back, JinHee Jung, Ki-Hong Kim, Jong-Ki Kim, Jae Ho Lee, HeeChul Yang, Cheong Lim, Sukki Cho, Kwhanmien Kim Inactivation of multidrug resistant (MDR) ‒ and extensively drug resistant (XDR)-Mycobacterium tuberculosis by photodynamic therapy. Photodiagnosis and Photodinamic Therapy, 2013, vol. 10, issue 4, pp. 694-702.
20. O'Riordan K., Sharlin D.S., Gross J., Chang S., Errabelli D., Akilov O.E., Kosaka S., Nau G.J., Hassan T. Photoinactivation of mycobacteria in vitro and in a new murine model of localized Mycobacterium bovis BCG-induced granulomatous infection. Antimicrob Agents Chemother., 2006, vol. 50, no. 5, pp. 1828-1834. //http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472192/2006 May; 50 (5): 1828-1834).
21. Raab O.Z. Ueber die Wirkung fluorescirender Stoffe auf Infusorien. Zeitschrift Biologie, 1900, vol. 39, pp. 524-546.
22. Tappeiner H., Jodlbauer A. Die sensibilizierende wirkung fluorescierender substanzen. Leipzig: FCW Vogel 1907.
Review
For citations:
Bredikhin D.A., Nikonov S.D., Cherednichenko A.G., Petrenko T.I. IN VITRO PHOTODYNAMIC INACTIVATION OF MYCOBACTERIUM TUBERCULOSIS BY RADAHLORIN. Tuberculosis and Lung Diseases. 2018;96(1):5-10. (In Russ.) https://doi.org/10.21292/2075-1230-2018-96-1-5-10